
Scaling for the generalized Ohm’s law

Let’s look at the magnitude of each term in the generalized Ohm’s law
to get a sense of which terms (in SSX say) dominate. Often in a complex
expression like Ohm’s law, a few terms will dominate so solving it (or even
just understanding it) is easier.

The generalized Ohm’s law comes essentially from the momentum equa-
tion of motion for the electron fluid. Its derivation can be found in some
plasma physics books (like Goldston). You would consider separately the
equations of motion for ions and electrons noting that J ∝ vi− ve. It can be
written (in MKS units):

E + v ×B = ηJ +
1

ne
J×B− 1

ne
∇P +

me

ne2

∂J

∂t

Since this is an MKS formula, every term is an electric field with units of
volts/meter. If you multiply through by a charge, then every term becomes a
force. The left hand side is the electric field in the moving frame (comes from
relativity). The first term on the right hand side comes from the electron
drag on the ions (called the resistive term). The second term is the Hall
term and has to do with the idea that electrons and ions can decouple and
move separately. The third term comes from the force to due gradients in
electron pressure. The last term comes from considering electron inertia (ie
the ma part of F = ma). There are other terms (related to ion inertia and
ion pressure for example), but they are smaller than those listed above. In
general, the pressure can be a tensor so the pressure term is really the div of
a pressure tensor. We’ll stick with scalar pressure here.

The first step is to write the equation in dimensionless form. This is really
important for doing numerical modeling. Computers don’t like dealing with
big numbers like our particle density (1021 in MKS) at the same time as
small numbers like the electron mass (10−31 in MKS). Dimensionalizing an
equation also gives a very good intuitive sense of what the equation means.
It also makes it easier to compare different systems (say SSX and the solar
corona).

Instead of MKS units, let’s consider units more appropriate for SSX.
Instead of meters, we’ll use a more typical scale length for the problem:
` = 0.1m. We’ll re-write every length x→ `x̃ where x was a length measured
in meters, x̃ is a dimensionless number, and ` = 0.1m. This means that if
x̃ = 1 we’re talking about a length of 0.1 meters.

We do that for all the dynamical variables:

1



v → vAṽ

B → B0B̃

E → E0Ẽ = vAB0Ẽ

So for example, if ṽ = 0.1 that means a velocity 1/10 the Alfvén velocity
where vA = 104m/s for us. Similarly, B0 = 0.1T for us so E0 = 103V/m is
our electric field unit.

J =
∇×B

µ0

→ B0

`µ0

J̃

Note that here in Ampere’s law, the gradient operator (which normally
has units of an inverse length) has also been rendered dimensionless.

t→ τAt̃ =
`

vA

t̃

We’ll need a few formulas later:

vA =
B0√
µ0nM

S ≡ µ0vA`

η

ω2
pi =

ne2

Mε0

δ2
i =

c2

ω2
pi

=
1

µ0ε0

Mε0

ne2
=

M

µ0ne2

There’s a similar expression for the electron inertial length δe.

β =
WK

WB

=
nkT

B2/µ0

This is just the kinetic pressure scaled to the magnetic pressure (instead
of using Pascals for example).

δi

`
=

1

e`

√
M

µ0n
=

1

ωciτA

This last expression is interesting. It says that the number of ion inertial
scales in SSX is the same as the number of gyro-orbits an ion can execute in
an Alfvén time.
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Dimensionless equation: First thing to do is divide the whole equation
by E0 = vAB0 so that all the electric field terms will be expressed in units of
our maximum expected electric field (about 1000 V/m). We get:

Ẽ + ṽ × B̃ =
1

vAB0

[
ηB0

`µ0

J̃ +
1

ne

B2
0

`µ0

J̃ × B̃ − 1

ne

P0

`
∇̃P̃ + ...

]

Resistive term: The first term on the right (resistive term) becomes:

η

µ0vA`
J̃ =

1

S
J̃

so the resistive term scales like the inverse Lundquist number (about
1/1000 for us).

Hall term: The second term looks like:

B0

vAne`µ0

We recall from above the expressions for the Alfvén speed and δi

`
and we

find that:

B0

vAne`µ0

=

√
µ0nM

ne`µ0

=
1

e`

√
M

µ0n
=

δi

`

So the dimensionless Hall term becomes:

δi

`
J̃ × B̃

Electron pressure term: The third term is very similar to the Hall term.
We need to recall the definition of β from above:

P0 = βB2
0/µ0

So the electron pressure term looks like:

β
B0

vAne`µ0

∇̃P̃ = β
δi

`
∇̃P̃

Electron inertia term: Finally, using our expressions for dimensionless
current and dimensionless time, the last term becomes:
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1

vAB0

me

ne2

vA

`

B0

`µ0

∂J̃

∂t̃
=

(
δe

`

)2
∂J̃

∂t̃

Dimensionless Ohm’s law: Let’s drop the twiddle and write down the full
dimensionless Ohm’s law:

E + v ×B =
1

S
J +

δi

`
J×B− β

δi

`
∇P +

(
δe

`

)2
∂J

∂t

Some numbers: Roughly speaking for SSX, S = 1000, δi = 1cm, δe =
1/4mm, ` = 10cm and β = 0.1. So the scale of the terms on the right
hand side of Ohm’s law is about 0.001, 0.1, 0.01, 0.00005 for resistive, Hall,
electron pressure, and electron inertia, respectively in SSX. Hall wins, and
that’s what we measure.

For the corona, S = 108, δi = 1m, δe = 2cm, ` = 10, 000km and β = 0.01.
So the scale of the terms on the right hand side of Ohm’s law is about
10−8, 10−7, 10−9, 10−10. The solar corona is pretty ideal... ie E + v × B ∼= 0
to high accuracy, yet reconnection is pretty fast there too.

Other random relations: Other useful stuff to know...

ωci =
eB0

M
ρi =

vi

ωci(
ρi

δi

)2

= β and
(

vi

vA

)2

= β

so ρivA
∼= δivi

λ2
D =

ε0kT

ne2

(
λD

δe

)2

=
ε0kT

ne2

ne2

c2meε0

=
kT

mec2

ηSp

µ0

= δ2
eνei
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