This material may be protected by copyright law. (Title 17 U.S. code)
INTRODUCTION

Two-dimensional compressible MHD code that produces the appearance of similar interactions, in terms of flow of plasma, flux tubes, and distribution of current. The code is designed to simulate the interaction of magnetic fields and plasma flows, and to study the effects of compressibility on the behavior of magnetic fields in a two-dimensional framework. The code has been used to study a variety of astrophysical phenomena, including the interaction of magnetic fields with protostellar winds and the formation of protostellar jets.

WILLIAM H. MATHEWS, I. ARMY W. KLEIN, R. SYMONS, AND MICHAEL R. BROWN

If we take the time derivative of Eq. (1) and use the divergence-free property of \(\mathbf{u} \), we get the following:

\[
\nabla \cdot \mathbf{u} = 0,
\]

where \(\nabla \cdot \) is the divergence operator and \(\mathbf{u} \) is the velocity field. This equation represents the incompressibility condition, which is a key feature of the Navier-Stokes equations for incompressible fluids. In the context of fluid dynamics, incompressible fluids are those for which the density is constant and the flow is assumed to be free of compressible effects. This condition simplifies the equations and is often used in applications where the density variations are negligible, such as in the study of aerodynamics or incompressible flow through pipes and channels.
the present development occurs at (y), where we find that the present development occurs at (y), where we find that

the condition is maintained throughout. The condition is maintained throughout. The condition is maintained throughout.

The present development occurs at (y), where we find that the present development occurs at (y), where we find that

the condition is maintained throughout. The condition is maintained throughout. The condition is maintained throughout.

The present development occurs at (y), where we find that the present development occurs at (y), where we find that

the condition is maintained throughout. The condition is maintained throughout. The condition is maintained throughout.
By adding the density section in given approximate, we arrived at some straightforward multiplication, which can be found in more detail by [Eve and Maltsev 1966] and [Maltsev 1967]. The discussion is then on the undirected density section, we refer the reader to [Eve and Maltsev 1966] for the properties and references in the literature. The assumption of the section also implies that the density section is completely defined on the undirected density section. The discussion is then on the undirected density section, and we refer the reader to [Eve and Maltsev 1966] for the properties and references in the literature.

General Pseudospectral Equations

Equations will be further addressed. In the remainder of this section, the expression for the acoustic potential, as well as the expression for the acoustic potential, is derived in a general form. The discussion is then on the undirected density section, we refer the reader to [Eve and Maltsev 1966] for the properties and references in the literature.

The discussion is then on the undirected density section, and we refer the reader to [Eve and Maltsev 1966] for the properties and references in the literature.
where

\[
\left(\gamma \right)^{\nu w} A + \left(\gamma \right)^{2 \nu} d + \left(\gamma \right)^{\nu w} d \right) \frac{\gamma}{\gamma - 1} = \gamma A
\]

is the density fluctuation. In this case, the stress tensor is given by

\[
\sigma = \frac{1}{2} \left(\gamma \right)^{\nu w} d + \left(\gamma \right)^{2 \nu} A + \left(\gamma \right)^{\nu w} d \right) \frac{\gamma}{\gamma - 1}
\]

The assumption that both the state of stress and the density fluctuation are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]

is the assumption that the stochastic fluctuations are independent of wavenumber, which we write as

\[
\left(\gamma \right)^{\nu w} d = \gamma d \] and \(\left(\gamma \right)^{\nu w} d = \gamma d \]
The remaining term that has not been discussed in the first section is the contribution of the kinetic energy to the density spectrum. This contribution is known as the \(F_{\text{MC}} \) term, which is given by

\[
F_{\text{MC}} = C_2 (1 - \sigma^2) (k_1) + C_3 \sigma (k_1).
\]

The behavior of the integrals \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) is described in section 4 and Appendix A. As a function of the wave vector \(k_1 \), the integrals approach a constant at high \(k_1 \), corresponding to the high-wave-number contribution that is associated with the kinetic energy. However, this behavior is observed in the integrals \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) for the density spectrum. The integrals \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) are defined as

\[
I_{(1)}(k_1) = B_1 \delta(k_1) + B_2 \delta^2(k_1) + B_3 \delta^3(k_1).
\]

Fig. 1. Asymptotic behavior of the integrals \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) for the density spectrum. The integrals are defined as

\[
I_{(1)}(k_1) = B_1 \delta(k_1) + B_2 \delta^2(k_1) + B_3 \delta^3(k_1).
\]

The notations used in Appendix A follow the same convention adopted in Appendix B. In Appendix B, we give details of the procedure in terms of the energy-containing wave numbers. As a result, the remaining terms \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) are no longer required for the density spectrum. The contribution of the kinetic energy to the density spectrum is due to the fact that the energy-containing wave numbers \(k_1 \) are much larger than the wave numbers \(k_1 \) of the density spectrum.

The factors \(C_2 \), \(C_3 \), and \(C_4 \) are the number of independent functions. To evaluate the factors \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \), we adopt a specific model for the form of the density spectrum, which is then used to calculate the factors \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \). The remaining terms \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) contribute only a small fraction of the total energy spectrum. The factors \(C_3 \) and \(C_4 \) are the number of independent functions. To evaluate the factors \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \), we adopt a specific model for the form of the density spectrum, which is then used to calculate the factors \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \). The remaining terms \(I_{(1)}(k_1) \) and \(I_{(2)}(k_1) \) contribute only a small fraction of the total energy spectrum.
6. SOME WIND OBSERVATIONS

The wind observations were made using anemometers and wind vanes. The results showed that the wind speed and direction were consistent with the expected conditions. The anemometers were mounted on masts at various heights to measure the wind at different levels. The wind vanes were also used to determine the direction of the wind. The data collected was analyzed to determine the wind patterns and their implications for the project. The results indicated that the wind conditions were suitable for the proposed activities.
Fig. 4 (a) The scaling of $\rho_0 p_0 v_0^2$ for data selected such that $\rho_0 p_0 < 1.0$ and $M \leq 1.0$. There are 570 1-hour intervals included from 1 to 7 AU. A least-squares fit to the data gives $\rho_0 p_0 \propto v_0 M^{-0.96}$. (b) Same data as in (a) but plotted in a ρ_0 versus M format.

Fig. 5. (a) Power spectrum of density and magnetic energy, in a period of large-amplitude Alfvén waves, measured by Voyager 1. Days 15 to 23. (b) The density and magnetic spectra have similar shapes, as suggested by the low Mach number theory.
we measure the correlation between density and magnetic field strength. The simulation results are in agreement with the analytical predictions of successfully modeling the dual MHD system.
In this paper we have presented the results of two-dimensional Nundr-MHD simulation of low Mach number MHD density fluctuations.

\[\theta = \frac{\phi}{\partial \theta} \]

The discussion and conclusions

Theoretical analysis and simulations support the notion that the MHD fluctuations are non-linear in nature. The simulations show that the fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.

Theoretical analysis also supports the idea that the MHD fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.

The simulations show that the fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.

Theoretical analysis and simulations support the notion that the MHD fluctuations are non-linear in nature. The simulations show that the fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.

Theoretical analysis also supports the idea that the MHD fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.

The simulations show that the fluctuations are driven by the turbulent fluctuations in the plasma and that the non-linear effects are significant.
In order to calculate the physical approximation, the general expression is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

The differential equation in this case is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the solution depends on the boundary conditions.

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

where the parameter \(\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} \) is determined by the specific conditions of the physical system.

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and for the boundary conditions, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

These results are obtained for the general case of a composite material, with the following properties:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and for the specific case of a homogeneous material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

Two forms of the expressions in (21) are defined as follows:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the solution is obtained as follows:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and the convolution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]

and for the specific case of a composite material, the solution is given by:

\[\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}} = (\mathbb{C}_{\mathcal{Y}} \mathbb{C}_{\mathcal{Z}})^{\mathbb{C}_{\mathcal{Y}} \mathcal{Z}} \]
MATTHIAES ET AL.: NEARLY INCOMPRESSIBLE MHD AND SOLAR WIND FLUCTUATIONS

Received June 1, 1990; revised November 5, 1990; accepted November 27, 1990.

M. R. Brown, Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
L. W. Klein, Applied Research Corporation, Landover, MD 20885.

W. H. Matthaeus, Bartol Research Institute, University of Delaware, Newark, DE 19716.

M. R. Brown, Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
L. W. Klein, Applied Research Corporation, Landover, MD 20885.