
Some notes on MHD equations of state
(Chew Goldberger Low)

The simplest MHD equation of state treats the plasma like an ideal gas
with pressure: P = nkT (n is the number of particles N per volume). This
model just has one fluid and one temperature. The more sophisticated model,
appropriate for magnetized plasma with long mean free paths (ωciτcoll > 1)
is due to Chew, Goldberger, and Low (1956).

Simple MHD model: If there’s just one pressure, and we assume an
ideal gas, then P = nkT and for adiabatic processes, PV γ is a constant. An
alternate way to write the adiabatic equation of state is:

d

dt

(
P

nγ

)
= 0

This is because the relationship

P

nγ
=
nkT

nγ
= const

implies n1−γT = const. This is the same as PV γ = const since

PV γ = PV V γ−1 = NkTV γ−1 = const

So TV γ−1 = const and V = N/n. This is a simple model, but ignores the
effect of the magnetic field, and if the mean free path is long (ie if ωciτcoll > 1)
then the model doesn’t take into account that pressure along the magnetic
field can be different than pressure across.

Note that here γ is the standard ratio of specific heats. It can be shown
in statistical mechanics that

γ =
f + 2

f

where f is the number of degrees of freedom. f is typically 3 (for a 3D process)
in which case γ = 5/3, but f could be as small as 1 (for 1D compression)
in which case γ = 3. If TV γ−1 = const and γ = 3, then an adiabatic
compression of a factor of 10 implies a temperature increase of a factor of
100.

CGL equation of state: We saw above that the simple MHD adiabatic
equation of state is:

d

dt
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P

nγ

)
= 0
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The CGL or double adiabatic theory has two formulae:

d

dt

(
P⊥
nB

)
= 0

d

dt

(
P‖B

2

n3

)
= 0

These come from adiabatic constants for single particle motion in a magnetic
field. I may review that below.

The first adiabatic invariant is the magnetic moment µ = IA. It turns
out that the magnetic moment can be written:

µ =
W⊥
B

= const

where W⊥ means the part of the proton’s kinetic energy associated with
motion perpendicular to the magnetic field. Since P⊥ = nW⊥ (pressure
is always an energy per volume), we have right away the first of the CGL
equations: (

P⊥
nB

)
= const

The second adiabatic invariant has to do with the parallel motion of a
proton bouncing between two regions of strong magnetic field (called mag-
netic mirror in plasma physics) separated by a distance L: v‖L = const. Now
a little algebra.

First, there are a few other constants associated with a magnetic structure
or flux tube. One is the total number of particles N = nV = nLA, where
A is the cross-sectional area of the flux tube (it cancels out in a minute).
The other constant is the magnetic flux Φ = BA. Notice that from the first
expression: A = N/nL. So, let’s square the flux, then substitute in for the
area:

Φ2 = B2A2 =
B2N2

n2L2

Now we notice that since P‖ = nW‖ and W‖ ∼ v2‖, if we use the second

adiabatic invariant: v‖L = const, we find that W‖ ∼ 1/L2 and P‖ ∼ n/L2.
So our flux equation becomes:

Φ2 =
B2N2

n2L2
∼ B2

n3

n

L2
∼
(
P‖B

2

n3

)
= const
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