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There is abundant experimental, theoretical and computational evidence that cer-
tain constrained turbulent fluid systems self-organize into large-scale structures.
Examples include two-dimensional (geostrophic) fluids, guiding-centre plasmas and
pure-electron plasmas, as well as two- and three-dimensional magnetofluids such as
reversed-field pinches and spheromaks. The theoretical understanding of relaxation
phenomena is divided into two quite different constructs: selective decay and max-
imal entropy. Theoretical foundations of both of these principles are largely due
to Montgomery and his collaborators. In this paper, selective decay and maximal
entropy theories of turbulent relaxation of fluids are reviewed and experimental
evidence is presented. Experimental evidence from both 2D fluids and from 3D
magnetofluids is consistent with the selective decay hypothesis. However, high-
resolution computational evidence strongly suggests that formation of large-scale
structures is dictated by maximal-entropy principles rather than selective decay.

1. Introduction
There is abundant evidence that certain constrained turbulent fluid systems self-
organize or relax into large-scale structures. These include two-dimensional (or
geostrophic) fluids such as hurricanes on Earth and the Great Red Spot on Jupiter,
guiding-centre plasmas and pure electron plasmas, as well as two- and three-
dimensional magnetofluids such as reversed-field pinches and spheromaks. The
current theoretical understanding of relaxation phenomena is divided into two
quite different constructs both developed largely by Montgomery and his collabo-
rators: selective decay (Montgomery et al. 1978; Matthaeus and Montgomery 1980)
and maximal entropy (Joyce and Montgomery 1973; Montgomery and Joyce 1974;
Montgomery et al. 1979).
The selective decay hypothesis is characterized by the following. If one considers

the ‘ideal invariants’ of the system and admits a small amount of dissipation, it is
often found that one of the invariants is ‘better conserved’ or more rugged than oth-
ers. If one minimizes the expression for the poorly conserved invariant subject to the
constraint that the rugged invariant is conserved using the technique of Lagrange
multipliers, an Euler equation for the field variables results. The Lagrange multi-
plier is the ratio of the poorly conserved invariant to the ruggedly conserved one.
The main drawback of the hypothesis is that it often requires many characteristic
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times for the selectively decayed state to emerge. Experimentally and computa-
tionally it is observed that large-scale structures can form in times comparable to
a characteristic time of the flow. In the following sections, we shall discuss selective
decay of enstrophy-to-energy for two-dimensional Navier–Stokes flows (2D NS),
of energy-to-mean square vector potential for two-dimensional magnetohydrody-
namics (2D MHD), and of energy-to-helicity for three-dimensional magnetohydro-
dynamics (3D MHD).
The principle of maximal entropy dictates that the air in a room initially dis-

tributed in clumps moves towards smooth uniformity; thermodynamic equilibrium
does not admit-large scale structures. However, for a system with a constrained
phase space, maximal entropy can generate large-scale structures as a long-lived
intermediate state. To apply the principle of maximal entropy, one needs to con-
sider a discrete or quantized version of the field variables. If we haveN such quanta
of the field (vortices in the case of 2D flow, bundles of flux or current filaments in
the case of MHD, or individual spins in the case of the 2D spin system), we consider
the number of ways these N quanta can be arranged in a given state (say spins
up or down). The Boltzmann entropy is defined as S = k ln Ω, i.e. the logarithm
of the number of permutations. The most probable state is the one with the most
permutations or the highest entropy subject to other constraints (such as conserva-
tion of energy and particle number). The maximal-entropy perspective addresses
the question: are these observed large-scale, self-organized structures in some sense
statistically more probable than other less simple ones?
Strictly speaking, selective-decay and maximal-entropy methods apply only to

isolated systems. It is for this reason that we shall concentrate on systems that
are freely decaying or are otherwise disconnected from external energy sources.
The situation is more complicated for driven systems, though many of the features
found in isolated systems carry over. Fusion magnetofluids require external driving
(if only for current drive and fuelling), so it is important in this case to understand
the features of driven, steady-state turbulent magnetofluids. The statement of the
problem is simple: what happens to a cylinder of dissipative magnetofluid when
you apply a voltage between the ends? A few features emerge from simulations
(Montgomery 1989; Dahlburg et al. 1988; Hossain et al. 1983; Hossain 1994). Within
a few tens of characteristic times (Alfvén times), a quasi-time-independent, relaxed
state is established (very much like the undriven decay case). The relaxed state
is characterized by the formation of a large-scale structure (a helically deformed
current channel) and significant organized flow. Large-scale flow patterns have been
observed in steady-state driven tokamaks (Tynan et al. 1992). Associated with the
formation of large scale structure is the back-transfer or inverse cascade of certain
ideal invariants in the Fourier representation. The selective accumulation of some
ideal invariant at the largest scale admitted by the boundary conditions (energy
in 2D NS, mean square vector potential in 2D MHD and helicity in 3D MHD)
is related to the selective decay of another ideal invariant in the non-driven case
(enstrophy in 2D NS, and energy in 2D and 3D MHD). Further discussion of driven
fluid systems is outside the scope of this review.
We should like to focus attention on a few fluid or continuous medium systems:

the two-state spin system (Sec. 2), the two-dimensional Navier–Stokes (2D NS) sys-
tem (Sec. 3) and the two- and three-dimensional magnetohydrodynamic systems
(2D and 3DMHD) (Sec. 4). There are several features common to each (see Table 1).
First, they self-organize or relax to large-scale structures, i.e. to structures as large
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Table 1. Comparison of statistical systems that exhibit relaxation to large scales.

2D Navier–Stokes 3D MHD and
Two-state spin and line-vortex current-filament
system system system

Ideal invariants E, N Ω (direct cascade) E (direct cascade)
E (inverse cascade) Hc, K (inverse

cascade)∫
a2 d2x (inverse

cascade in 2D)

Negative Yes Yes βE , βK < 0?
temperature?

Phase space limits E bounded above and E bounded above and EB bounded below
below for fixed N below for fixed N for fixed K

Type of Point Point/continuum Continuum
interaction

Equilibration teq T2 teddy tAlf

Dissipation tdiss T1 tviscous tL/R

Theory Ramsey Onsager, Frisch, Montgomery,
Montgomery, Joyce, Turner, Vahala,
Matthaeus, Kraichnan Matthaeus, Dahlburg

Experiment Purcell, Pound, Driscoll, Fine, Barnes, Jarboe,
Abragam Huang, Tabeling, Brown, Bodin

Hopfinger

as allowed by boundary conditions. Secondly, the relaxation is rapid compared with
a thermodynamic equilibration time or decay time. Often, the relaxation is as fast
as the characteristic time of the flow (the interaction or eddy turnover time or
Alfvén time for MHD). Thirdly, in each case, the dynamics and therefore the sta-
tistical phase space are constrained in some way. Because of the constrained phase
space, these systems admit negative temperature and therefore an exponentially
increasing Boltzmann factor. Fourthly, there are ideal invariants for each system,
i.e. quantities that are conserved in the absence of dissipation. Further, if a small
amount of dissipation is admitted, it is often the case that at least one of the ideal
invariants is more strongly affected by the dissipation than the others.

2. Two-state spin system
In order to provide a framework for some of the statistical concepts to be used
later, let us review a simple two-state spin system. Consider a two-dimensional
array of N weakly interacting, localized spins in an external magnetic field with
n+ directed upward and n− directed downward (Purcell and Pound 1951; Ramsey
1956; Abragam and Proctor 1957). An up spin contributes +µB to the energy while
a down spin contributes −µB (the field is oriented downward). The energy of the
system depends only on the number of excess up spins: E = µB(n+ − n−). If all N
spins are up, the system has its maximum energy Emax = NµB.
We can write the number of distinct ways in which the N spins can be arranged

for a given proportion of n+ and n−:

Ω(n+, n−) =
N !

n+!n−!
. (1)
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Figure 1. Plot of entropy and inverse temperaure versus energy for the two-state spin
system for N = 10: ◦ entropy in units of Nk, (2), �, 1/T = ∂S/∂E.

Note that there is only one way to construct the maximum- and minimum-energy
states (all spins up or all spins down) and there are the most permutations with an
equal proportion of up and down spins. The Boltzmann entropy of the system is
defined as S = k ln Ω, so that the highest-entropy configuration corresponds to the
one with the most permutations. If we use Stirling’s approximation for the factorial
(ln n! ≈ n ln n−n), the entropy of our spin system can be written (in a suggestive
way)

S = k

(
N lnN −

∑
+,−

ni lnni

)
= −k

∑
+,−

ni lnni + const, (2)

where the sum is taken over all the spins in the 2D array.
The quantity that equalizes when two systems are in equilibrium is defined as

β ≡ 1
kT

=
1
k

(
∂S

∂E

)
n

,

where T is the temperature. We can see that since there is a maximum energy and
there is only one way to construct it, it follows that the spin temperature is formally
negative for positive energies (see Fig. 1). Note also that the highest energy state
is also the most ordered, and corresponds to S = 0.
The situation is quite different for an unconstrained system. Recall that for an

ideal gas with an unlimited phase space, the number of distinct permutations grows
with energy and number of degrees of freedom f like Ef = E3N/2. The entropy
S = 3

2Nk lnE, so β = 3N/2E or T = 2E/3Nk. This is the intuitive result that for
an ideal gas the temperature is always positive and grows with increasing average
energy: Ē = 3

2NkT . Because the number of available states increases rapidly with
energy (for conventional systems) and because we can assume ergodicity (all states
equally likely), it follows there are many more states at higher energy and the
probability of their occupation is lower. This is reflected in the Boltzmann factor
exp (−E/kT ). If phase space is constrained somehow and there are fewer states
at higher energy then those states are more likely. This is the case of negative
temperature, and is reflected in the Boltzmann factor exp (+E/kT ).
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There were a number of experiments performed on negative-temperature spin
systems during the 1950s. Purcell and Pound (1951) performed experiments on LiF
crystals in a strong magnetic field. The nuclear magnetization of an LiF sample was
reversed by rapidly changing the sign of an applied magnetic field. They measured
the cooling curve (via the 7Li resonance) as the negative-temperature spin system
slowly equilibrated with the positive-temperature lattice. It was pointed out by
Ramsey (1956) that the negative-temperature state persists for a macroscopic time
(several minutes), which he called T1, but the relaxation time necessary to establish
the negative temperature state was very short (a few microseconds), and was called
T2. T1 is the thermodynamic time required for the spins to equilibrate with the
lattice while T2 is the characteristic time for the spin system (the Larmor precession
time). Disparate time scales are an important ingredient for the establishment of
large-scale structures.
This relatively simple system displays many of the principal ideas we shall draw

upon later. First, the phase-space volume is limited, since there is either a maxi-
mum energy for the system or some other constraint. Secondly, because there is
a maximum energy, the system admits a negative temperature. A formally nega-
tive temperature implies an exponentially growing Boltzmann factor. Thirdly, the
negative temperature states exhibit large-scale order. Indeed, the phase transition
that exists for interacting spins implies large-scale order. Finally, the large-scale
order can persist for times long compared with a characteristic time scale for the
system, but will eventually decay on thermodynamic times.

3. Two-dimensional Navier–Stokes flow and line vortices
We now turn our attention to a fluid system where the entities are no longer fixed
to a lattice but are free to move. To stay as close as possible to the 2D spin system,
let us first consider a 2D magnetized plasma consisting of a collection of N charged
rods of mass m, n+ of them charged positively and n− charged negatively. The
magnetic field is applied along the length of the rods. The equation of motion for a
given rod (which we label j) is

dvj
dt

=
qj
m
(Ej + vj × B), (3)

where qj is the charge of the rod. Recall that in the case of the two-state spin
system, the energy is due to interaction of the entities with an external field, and
the entities are fixed on a lattice. In the case of the 2D rod plasma, energy is due
to interaction among the entities (or equivalently a mean field) and the entities
are free to move. Clearly, for a given fixed configuration of rods, the highest-energy
states can be obtained if all the rods are the same sign (analogous to all the spins
up). However, for a fixed proportion of n+ and n− (say n+ = n−), the highest-
energy states are characterized by clumping all the positive rods together and all
the negative rods together and then separating the clumps as far as possible. If we
demand that the system is in a high-energy state then like-signed rods must clump
together just as all the spins must flip up to form a high-energy state in the 2D
spin system.
The dynamics of the 2D plasma is simplified if we invoke the ‘guiding centre’

approximation. We can average over the high-frequency cyclotron motion of the
rods (effectively neglecting the left-hand side of (3)) and retain only the slow drift
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motion, so that E + v× B = 0 and E · B = 0, so

vj =
Ej × B
B2

. (4)

Interesting connections can be established between the continuous and discrete
models of the guiding-centre plasma and 2D Navier–Stokes fluids. If one takes a
fluid limit of the guiding-centre plasma (continuous charge distribution), it can
be shown that the equations are isomorphic to the 2D Navier–Stokes equations
(Montgomery and Joyce 1974; Montgomery 1975). Conversely, one can arrive at
a discrete-vortex model for 2D fluid flow in which vorticity is permanently con-
centrated into delta functions, and the dynamical equations for the fluid simply
become the equations for the trajectories of these vortices. The discrete-vortex
model is essentially identical to the guiding-centre model for charged rods.
We can compute the electric field at the location of a particular rod (Ej) due to

the charge of all the others, and rewrite (4) as

dxi
dt

=
∑
j≠i

Kj

2π
× xij
x2ij

, (5)

where Kj = −λjB/ε0B2 and λj is the charge per unit length of the jth rod. It turns
out that (5) is exactly the equation of motion for a line-vortex system (a system
of delta functions in vorticity), with Kj representing the strength of the jth vortex
(Onsager 1949). Henceforth, we can use the language of guiding-centre plasmas and
vortex dynamics interchangeably. Indeed, practitioners of pure electron guiding-
centre plasmas often refer to a column of electrons as a lump of vorticity.
The unusual properties of Navier–Stokes flow constrained to two dimensions were

first noticed by Onsager (1949) and Fjortoft (1953). Onsager reduced the problem to
one of an interaction of discrete line vortices very similar to the two-state spin prob-
lem. It was Onsager who first suggested the existence of a negative-temperature
state above some critical energy and posited that the negative temperature state
admitted no uniform, quiescent thermodynamic equilibrium. Fjortoft noticed that
since both the mean square velocity (the energy) and the mean square vorticity
(the enstrophy) were conserved, a transfer of 〈v2〉 to small scales must be accom-
panied by a transfer of 〈v2〉 to large scales. There are a number of references on 2D
Navier–Stokes flows that have a review character, including Montgomery (1975,
1977, 1991b), Kraichnan and Montgomery (1980) Hasagawa (1985) and Chorin
(1994).

3.1. Theoretical constructs: selective decay and maximal entropy

The curl of the Navier–Stokes equation for a two dimensional fluid can be written
as

∂ω

∂t
+ v · ∇ω = ν∇2ω, (6)

where ω = ωẑ = ∇ × v is the vorticity. Since v = (vx, vy, 0) and is divergence-free,
we can write v = ẑ × ∇ψ, so that ω = ∇2ψ, where ψ is the stream function. The
vorticity can be thought of a source for the velocity field (just as J is a source for
B in electrodynamics). Notice that for the guiding-centre plasma v = ẑ × ∇φ/Bz

and ∇2φ = qn/ε0, so that the electrostatic potential φ plays the role of the stream
function ψ and the charge density n plays the role of the vorticity ω.
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Two ideal invariants of interest are the mean square velocity (energy per unit
mass) and mean square vorticity (called the enstrophy), defined in configuration
space:

E =
1
2

∫
v2 d2x, Ω =

1
2

∫
ω2 d2x. (7)

Notice that since ω = ∇ × v,Ω(k), has two extra factors of k in Fourier space.
Amodel that is a precursor of selective decay is the absolute equilibrium ensemble

model of ideal flow (Kraichnan 1967). In this statistical mechanical model, the phase
space consists of a large but finite number of discrete Fourier modes, and the energy
and enstrophy are exactly conserved. The equilibrium spectral predictions are

E(k) =
1

α + βk2
, Ω(k) =

k2

α + βk2
, (8)

where α and β are inverse temperatures associated with E and Ω. Because β is al-
ways negative for large systems, the energy tends to be concentrated at the longest
allowed wavelength (lowest k). This suggests, for the non-equilibrium case, a ten-
dency for the nonlinear interactions to ‘back-transfer’ energy in k-space. This must
be accompanied by a ‘forward transfer’ of enstrophy to higher k. The absolute
equilibrium ensemble introduces a model with a finite number of degrees of free-
dom and a discretization in k space, a procedure that is clearly complementary to
the discretization in real space that is central to the maximal entropy methods.
However, the k-space methods introduce no correlation between distinct k-modes,
and therefore cannot produce coherent real-space structures except those implied
by the finite size of the periodic box (or container).
Notice also that whatever the spectrum of E(k) happens to be, the extra factor of

k2 forces the spectrum of Ω(k) to peak at higher k (smaller scales), so that the effect
of dissipation on Ω(k) is greater than on E(k). This is the motivation for selective
decay of enstrophy with respect to energy in 2D Navier–Stokes flows. In addition,
it can be shown that the ratio of enstrophy to energy monotonically decays in time
under the influence of 2D Navier–Stokes dynamics (Ting et al. 1986)
Formally, we which to extremize Ω subject to the constraint that E is conserved:

δΩ − λ δE = 0, (9)

where λ is a Lagrange multiplier (the enstrophy-to-energy ratio). Using (7), (9)
becomes

δ

∫
(∇ × v)2 d2x− λδ

∫
v2 d2x = 0. (10)

Integrating by parts, we find∫
δv · (∇ × ∇ × v− λv) d2x +

∮
(δv× ω) · dl = 0. (11)

If the boundary is such that the vorticity vanishes (free-slip or viscous) then the
boundary term vanishes and we have the Euler equation for selective decay of
enstrophy to energy in 2D Navier–Stokes flow:

∇ × ∇ × v = ∇ × ω = λv, (12)

or, written in terms of the stream function ψ,

∇2ψ + λψ = 0. (13)
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In a Cartesian geometry, the selective decay solution takes the form

ψ(x, y) = ψ0 cos(kxx) cos(kyy) (14)

for some fixed k = (kx, ky). This is known as a ‘single-wavenumber’ state. Clearly
the state that minimizes Ω/E is the single-wavenumber state with the minimum
k = (k2x + k

2
y)
1/2 allowed by the boundary conditions.

To determine the state consistent with maximal entropy, we take our cue from
the two-state spin system discussed in Sec. 2 and Boltzmann statistics. A statistical
mechanical description of a continuum system requires that some kind of quanti-
zation be made. We consider the 2D fluid modelled by an array of N line vortices
with n+ clockwise and n− counterclockwise (Onsager 1949; Joyce and Montgomery
1973). The entropy of such an array can be written (in analogy to (2)) as

S ≡ −
∫
n+ lnn+ d2x−

∫
n− lnn− d2x, (15)

where now n+ and n− refer to the continuous two-dimensional number densities of
clockwise and counterclockwise vortex distributions. We now want to maximize S
subject to the constraints that the total energy and total number of entities are
conserved. Note that the energy is purely potential energy due to the interaction
of the vortices of fluid or rods of charge; there is no kinetic energy in the problem.
As in the two-state spin system, the critical energy above which temperatures are
negative is E = 0 (once the self-energy of the vortices or line charges has been
subtracted). Maximizing (15) subject to the constraints that the total potential
energy and the total vorticities of either sign (

∫
n+ d

2x and
∫
n− d2x) are conserved

yields

N±(x) = exp [−α± ∓ βψ(x)], (16)

where

ψ(x) = K
∫
ψ̂(x, x′)[n+(x′)− n−(x′)] d2x, (17)

with ψ̂(x, x′) defined by ∇2ψ̂ = −δ(x− x′) and α± and β the Lagrange multipliers
in the problem. By adding and subtracting the two equations in (16), combining
α± and K into a single constant λ and invoking the equations of constraint, we
find the Montgomery–Joyce (or sinh–Poisson) equation:

∇2ψ + λ2 sinh | β | ψ = 0. (18)

It is useful to note here that sinh ψ ≈ ψ to leading order, so that the result of the
maximal-entropy principle can be viewed as a correction to the result of selective
decay, (13), though the results come from very different physical viewpoints.
Detailed comparisons of the results of relaxation in 2D NS turbulence to the pre-

dictions of selective decay, (13), and of maximal entropy, (18), have been performed
computationally (Matthaeus et al. 1991a, b; Montgomery et al. 1992, 1993). The 2D
Navier–Stokes equation (6) was solved numerically in the Fourier representation
with high resolution, and the dynamics was followed for nearly 400 characteristic
times (eddy turnover time) (see Fig. 2). By the end of the simulation, only 1% of the
initial enstrophy remained, while over 80% of the initial energy remained, clearly
demonstrating the principle of selective decay. However, when we compare the cor-
relations between the Navier–Stokes solution and the prediction of selective decay,
C(ω, ψ), with that of the Navier–Stokes solution and the prediction of maximal
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(a)  t =1

(b)  t = 28

(c)  t = 58

(d )  t = 94

(e)  t =118

( f )  t = 292

Figure 2. 3D perspective plots of the vorticity versus x and y for six successive times from
a 2D Navier–Stokes simulation. (From Matthaeus et al. (1991).)

entropy, C(ω, sinh βψ), we find that maximal entropy is a much better predictor of
the relaxed state (see Fig. 3). The astonishing point here is that a zero-dissipation,
discrete model (maximal entropy) is a better predictor of relaxed states in viscous
2D NS turbulence than is a finite-dissipation, continuum model (selective decay).

3.2. Experimental evidence of relaxation in 2D fluid systems

Because of the direct correspondence between the 2D Navier–Stokes equation and
the equation of motion for a guiding-centre plasma, some of the best experimental
evidence of relaxation to large-scale structures comes from the UCSD pure-electron
plasma group (Driscoll and Fine 1990; Mitchell et al. 1993; Huang and Driscoll 1994;
Huang et al. 1995; Fine et al. 1995). The pure-electron plasmas are generated by
hot filaments and trapped in a grounded cylinder. A strong, uniform axial magnetic
field provides radial confinement, and negative voltages applied to cylindrical end
electrodes provide the axial confinement. A typical experiment consists of injecting
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Figure 4. Schematic of the pure-electron guiding-centre plasma device. (From Huang and
Driscoll (1994).)

a column (or several columns) of electrons into the cylindrical trap, allowing the
system to evolve or relax, and then dumping the electrons out one end to be detected
with electrostatic analysers or imaged on a phosphor screen (see Fig. 4).
The pure-electron plasmas typically have density ne 6 107 cm−3 and are confined

in an axial field of a few hundred gauss and an axial potential well of a few hundred
volts. The electron columns are about 1 cm in diameter and up to 40 cm long. The
characteristic drift time of a column is about 10 µs while the viscous dissipation
time is 10 s indicating that the effective Reynolds number is large (perhaps 106

or more). The electron cyclotron time is about 1 ns, so that the guiding-centre
approximation is justified.
In a particularly interesting experiment, Driscoll and Fine (1990) and Fine et al.

(1991) trapped two electron columns (vortices), and observed their merging in less
than one rotation period (about 50 µs) (see Fig. 5). They noticed that the merging
time is a strong function of the vortex separation. If the separation was increased
from 1.8 to 2.0 diameters, the merging time increased from 10 µs to 1 s. The final
single-vortex state has also been studied in detail with an array of electrostatic
analysers (Huang and Driscoll 1994). In addition to these vortex-dynamics exper-
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10–3

10–2

10–1
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Figure 5. Merger of two pure-electron columns (vortices). Time intervals are 10 µs.(From
Driscoll and Fine (1990).)

iments, the free relaxation of turbulent flows has been studied with a variety of
initial conditions and detection techniques. Huang and Driscoll (1994) observed
relaxation of an initially hollow vorticity profile, which is unstable to low-order
azimuthal asymmetries. The profile of the relaxed state n(r) is compared with the
predictions of selective decay and maximal entropy, and a better fit is claimed with
the selective decay state (see Fig. 6). Note that if n+ = N and n− = 0 then fits should
be to solutions of ∇2ψ + λ2 exp (−βψ) = 0. However, fits of data to predictions of
selective decay and maximal entropy and comparison of the results are subtle.
Experiments have also been performed on the free decay of turbulence charac-

terized by 50–100 initial vorticies (Fine et al. 1995). The columns are formed by
the rapid breakup of a helical sheet of charge due to the Kelvin–Helmholtz insta-
bility. Depending on subtleties of the initial conditions (not fully understood), the
random-looking distribution of vorticity will either collapse to a single vortex or to
a long-lived array of ‘vortex crystals’ (see Fig. 7). Given the foregoing discussion,
the final single-vortex state is understandable in terms of either selective decay or
maximal entropy; the vortex-crystal state is more difficult to understand. It is in-
teresting to speculate whether conventional 2D fluids could exhibit vortex-crystal
behaviour either experimentally or computationally.
Self-organization has been observed in the dynamics of quantized vortices in

liquid 4He. Yarmchuk et al. (1979) and Yarmchuk and Packard (1982) employed
photographic techniques to image the vortex dynamics. Ions injected into the flow
are attracted to vortex cores and accumulate there for several seconds. An applied
electric field accelerates charge out of the vortices, where it is imaged on a phosphor
screen. Single-vortex states have been observed, as well as arrays of ‘vortex crystals’
similar to those observed in pure-electron plasmas. A typical vortex has a diameter
of 100 µm, and up to 11 have been observed in a single array. The diameter of the
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Figure 6. Measured radial density profiles of the initial (t = 0, ×) and metaequilibrium
(t = 5 ms, �) states, and theoretical predictions from four models: ——, restricted mini-
mal-entrophy; — - —, global minimum-entrophy; — —, plasma vortex maximal entropy;
- - - -, fluid maximal-entropy. (From Huang and Driscoll (1994).)

tank was 2 mm. Note that the flow in this case is essentially dissipationless, so that
we might expect the principle of maximal entropy to apply.
Griffiths and Hopfinger (1987) observed the merging of two vortices in rotating

cylinders. Experiments were carried out in a 1 m diameter tank 0.2 m deep. Fig-
ure 8 depicts the merger of two vortices of differing strength. Note the qualitative
similarity of merging of vortices in water to the merging of guiding-centre pure-
electron plasmas in Fig. 5. It is also interesting to compare Figs 5 and 8 with a
simulation of a vortex merger (McWilliams 1984) (see Fig. 9).
Gharib and Derango (1989) used a novel high-speed soap-film device to observe

the dynamics of two-dimensional Navier-Stokes flow. A 4 in wide sheet of soap is
pulled along parallel rods at velocities up to 2.5 m s−1 by the contact action of
a two-dimensional water jet. The ratio of a typical transverse dimension to the
thickness of the layer is about 104, ensuring a high degree of two-dimensionality.
The Reynolds number can be varied up to about 104. Figure 10 depicts freely
decaying 2D turbulence behind a grid placed in the flow. Notice that the average
size of vortices increases downstream of the grid.
Tabeling et al. (1991) and Cardoso et al. (1994) observed relaxation in freely

decaying two-dimensional turbulence using a thin layer of electrolyte. An array of
counter-rotating vortices is established by driving a current across the layer with
an array of permanent magnets below. J × B forces in the fluid establish a steady
state of 100 vortices. When the current is turned off, the vortices begin to merge as
the 2D fluid relaxes (Fig. 11). Tabeling et al. find that after a short time (0.7 s), the
number of vortices is reduced by half, but the energy of the flow is approximately
conserved (Efin/Einitial = 0.8) (Fig. 12). The ratio of a typical transverse dimension
to the thickness of the layer is about 10. The Reynolds number is between 600
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(a) (b)

(c) (d )

Figure 8. Merger of two vortices of differing strengths in a rotating water cylinder. Time
intervals are 10 rotation periods; one period is about 6 s. (From Griffiths and Hopfinger
(1987).)

and 2400. Notice the similarity among the images of freely decaying 2D turbulence
depicted in Figs 7, 10 and 11.

4. Magnetohydrodynamics
A magnetofluid is an electrically conducting fluid obeying the laws of magnetohy-
drodynamics (MHD):

ρ

(
∂v
∂t
+ v · ∇v

)
= −∇p + J× B + ρν∇2v, (19)

E + v× B = ηJ, (20)

∂B
∂t

= ∇ × (v× B) + η

µ0
∇2B, (21)
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(a)  t =13·75 (b)  t =14·25 (c)  t =14·75

(d)  t =15·25 (e)  t =15·75 ( f )  t =16·50

Figure 9. Merger of two vortices of differing strengths from a 2D Navier–Stokes simulation.
(From McWilliams (1984).)

Figure 10. Two dimensional grid turbulence on a moving soap film. Notice the evidence of
vortex merger downstream. (From Gharib and Derango (1989).)

where (19) is the equation of motion, (20) is Ohm’s law and (21) is the curl of (20).
Two ideal invariants of interest in the case of 3D MHD are the energy and magnetic
helicity:

EB =
∫

B2

2µ0
d3x, K =

∫
A · B d3x, (22)

where B = ∇ × A. A third invariant, the cross-helicity Hc =
∫
v · B d3x, will not be

discussed here. The helicity is related to the product of linked fluxes (Moffatt 1978),
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(a) (b)

Figure 11. Freely decaying 2D turbulence from an initially ordered square lattice of 100
vortices in an electrolyte solution. The size of the system is 8 cm × 8 cm. (a) initial state at
t = 0; (b) t = 0.5 s. (From Tabeling et al. (1991).)
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Figure 12. Temporal evolution of the spatially averaged velocity (a) and the number of
remaining vortices N −Nf . (b) Both plots are normalized. (From Tabeling et al. (1991).)

and acts as a topological invariant. If the helicity is fixed then the magnetic energy
cannot drop below a certain value without unlinking flux tubes. By the Schwartz
triangle inequality, we can write (Frisch et al. 1975)

K2 =
(∫

A · B d3x
)

6

(∫
A2 d3x

)(∫
B2 d3x

)
, (23)

and by the Poincaré inequality,∫
B2 d3x > λ2

∫
A2 d3x, (24)

where λ is an inverse scale length in the system. Equations (23) and (24) together
yield

EB > λ | K | . (25)



Rapid relaxation to large-scale structures in turbulent fluids 219

In other words, the magnetic energy is bounded from below owing to the magnetic
helicity being conserved; EB cannot decrease below some minimum value as long as
K is finite. As we have seen in earlier sections, a bound on the available phase space
is a necessary criterion for the formation of large-scale structures. The statistical
properties of ideal 3D MHD are discussed in detail by Stribling and Matthaeus
(1990) and Frisch et al. (1975).
An additional point supporting the likelihood of the formation of large-scale

structures in 3D MHD has been provided by Frisch et al. (1975). In an argument
similar to that of Fjortoft (1953) for 2D NS flows, they note that simultaneous
transfer of EB and K to small scales is impossible. Consider a magnetofluid in an
initial state characterized by two wavenumbers p and q (p < q), and suppose that
the state is ‘maximally helical’ (i.e. equality holds in (25), so that λ = kmin in the
Fourier representation). Now let this excitation be transferred entirely to a new
wavenumber k. Because of conservation of magnetic energy and magnetic helicity,
we have

EB(p) + EB(q) = EB(k), (26)

K(p) +K(q) = K(k) =
EB(p)
p

+
EB(q)
q

=
EB(k)
k

. (27)

We see that k must be less than q and the transfer must be to larger scales or else
the condition (25) is violated.

4.1. Two-dimensional MHD

If the flow is limited to two dimensions, the full MHD equations reduce to (Fyfe
and Montgomery 1976, 1978; Fyfe et al. 1977a, b; Hossain et al. 1983, 1985; Hossain
1994)

∂ω

∂t
+ v · ∇ω = B · ∇j + ν∇2ω, (28)

∂a
∂t
+ v · ∇a = η∇2a, (29)

where ω (the vorticity as in the 2D NS case), j (the current density) and a (the vec-
tor potential) are vectors with only a z component. The ideal invariants of interest
are the mean square vector potential (

∫
a2 d2x) and the energy per unit mass. 2D

MHD serves as a useful bridge between 2D NS and 3D MHD. There aren’t many
experiments for which 2D MHD applies (see, however, Sommeria 1986). It turns out
that the role of ideal invariants in 2D MHD is similar to 3D MHD (with the mean
square vector potential playing the role of magnetic helicity), while the geometry
and velocity field are similar to those in 2D NS. Large-scale structures have been
observed in 2D MHD simulations (Hossain 1994). There is recent computational
evidence that suggests that at early times, maximal entropy is a better predictor
of relaxed states in 2D MHD than is selective decay (M. Hossain, private commu-
nication).

4.2. Three-dimensional MHD: selective decay and maximal entropy

We use the same kind of justification for applying selective decay to 3D MHD as
we did for 2D Navier–Stokes flows. Again, the two ideal invariants of interest in
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the case of 3D MHD are the energy and magnetic helicity:

EB =
∫

B2

2µ0
d3x, K =

∫
A · B d3x, (30)

where B = ∇ × A. The justification for ignoring the kinetic energy of the mag-
netofluid EK is primarily to simplify the calculation. The ratio of kinetic to mag-
netic energy β = EK/EB is usually small in laboratory magnetofluids, but there
are relatively few direct measurements of the velocity field (however, see Tynan et
al. 1992). There are recent calculations using models more general than MHD that
minimize the total magnetofluid energy EK + EB subject to the constraint that
the generalized helicity is conserved (where A is replaced by A+mv/q) (Steinhauer
and Ishida 1996). It will be important in the future to resist the temptation to
ignore the velocity field and put it on the same footing as the magnetic field where
it belongs.
Notice that in the Fourier representation EB(k) has one more factor of k than

does K(k). Whatever the spectrum of K(k) happens to be, the extra factor of k
forces the spectrum of E(k) to peak at higher k (smaller scales) so that the effect
of dissipation on E(k) is greater than on K(k). This is the motivation for selective
decay of energy with respect to helicity in 3DMHD. Formally, we wish to extremize
E subject to the constraint that K is conserved:

δEB + λ δK = 0, (31)

where λ is a Lagrange multiplier with the units of inverse length (the energy-to-
helicity ratio). After substitutions and an integration by parts, the minimization
condition can be written as∫

δA · (∇ × B− λB) d3x +
∮
(δA× B− 1

2δA× A) · d2x = 0. (32)

If the magnetofluid is in a perfectly conducting container then B · n̂ = 0, and the
surface integral in (32) vanishes. We are left with the Euler equation for selective
decay of energy to helicity in 3D MHD:

∇ × B = λB. (33)

This is often referred to as the force-free state (since if J is proportional to B then
J × B = 0) or the Taylor (1974, 1986) state. If the magnetofluid is in a perfectly
conducting cylindrical vessel, the lowest-order solutions are proportional to Bessel
functions:

Bz = B0 J0(λr), Bθ = B0 J1(λr), Br = 0. (34)

In order to compute the entropy of a continuum magnetofluid, some kind of
quantization of the field variables needs to be made. In a seminal paper, Mont-
gomery et al. (1979) suggested quantizing the axial current density Jz and the
axial magnetic field Bz of a magnetofluid in a perfectly conducting cylinder into
discrete filaments and discrete field lines respectively. We can then imagine divid-
ing the cross-section of the cylinder into bins and counting the discrete entities
in each one. The number of current filaments and field lines in the ith bin are nJi
and nB

i respectively. Note that there are six field variables that we could choose to
quantize (Jz, Bz, Az, Jθ, Bθ, Aθ) and that any two will determine the other four.
For example, one could imagine an interacting flux tube model involving the vector
potential A. We can write down the entropy of this system (in analogy with the
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spin system of (2) and the vortex system of (15)):

S ≈ −
∑
i

nji lnn
j
i −

∑
i

nBi lnn
B
i , (35)

where the sum is taken over all the bins in the cross-section. Note that the bins are
fixed in space (just as the spins were in Sec. 2), but since the filaments and field lines
can move, the occupation number of a particular bin can vary as long as the total
number of filaments and field lines is fixed. We now want to maximize S subject
to whatever constraints we wish to impose. The constraint that the total number
of filaments and field lines are fixed is tantamount to holding constant the axial
current and flux:

Iz ∝
∑
i

nJi = const, (36)

Φz ∝
∑
i

nBi = const. (37)

Since there is magnetic energy stored in both the axial field and the field due to the
axial current, conservation of magnetic energy involves the squares of the ni (again,
kinetic energy is ignored to simplify the problem). If we also wish to fix themagnetic
helicity, there will be a fourth constraint involving sums of the cross-product nJi n

B
j .

Maximizing (35) subject to these four constraints yields the following expressions
for the most probable distribution of the field variables (Montgomery et al. 1979):

Bz = exp (−αB − βBz − γAz), (38)

Jz = exp (−αJ − βAz − γπ), (39)

where π is an auxiliary field related to Bz,

π =
∫
A(x, x′)Bz(x′) d2x′, (40)

and Az and A(x, x′) solve the Poisson equations ∇2Az = −Jz and ∇2A = −δ(x −
x′). The Lagrange multipliers αJ , αB , β and γ are associated with holding fixed
Iz, Φz, EB and K respectively, and can be viewed as inverse (possibly negative)
temperatures. Since EB is bounded from below by K, it is the associated inverse
temperature β that can be negative. Note that (38) and (39) have the familiar
form of the Boltzmann factor (which is derived in exactly the same way), and
are highly nonlinear since Bz and Az appear in the exponent. An analogue to
the Montgomery–Joyce maximal-entropy equation for 2D vortices, (18), can be
obtained by substituting (39) into the Poisson equation for Jz:

∇2Az = exp (−αJ − βAz − γπ). (41)

This equation is similar in form to the maximal-entropy equation for a single com-
ponent guiding-centre plasma, though more unwieldy because of the auxiliary func-
tion π.
Ambrosiano and Vahala (1981) used the maximal-entropy states (38) and (41) to

determine the most probable distributions of current in a tokamak and a reversed-
field pinch. In the absence of flow, the equation of motion (19) reduces to one of
pressure balance (called the Grad–Shafranov equation): J × B = ∇P . Ambrosiano
and Valhala used the maximal-entropy states as a mechanism to select among the
infinitely many solutions to the Grad–Shafranov equation. Recently, other authors
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Figure 13. Experimental and theoretical (34) magnetic field profiles from the reversed-field
pinch HBTX-1A. (From Bodin (1984).)

have adopted the notion of a magnetofluid composed of discrete filaments (Taylor
1993; Kinney et al. 1994).

4.3. Experimental evidence

There are relatively few direct measurements of magnetic fields and velocity fields in
relaxed, un-driven 3D magnetofluids. To be of interest to the fusion program, toka-
mak magnetofluids require an externally applied electric field (for current drive),
and generally have external sources of heat and particles. In addition, the tokamak
is prevented from rapid relaxation by the application of a strong toroidal field. The
major early success of the theory of selective decay of energy to helicity was applied
by Taylor to relaxed reversed-field pinches and spheromaks (Taylor 1974, 1986).
Figures 13 and 14 show the toroidal and poloidal field profiles from the reversed-
field pinch HBTX-1A (Bodin 1984) and the spheromak Beta II (Turner et al. 1983)
compared with the prediction of selective decay, i.e. the Bessel-function solution of
the force-free state (33) and (34). The fit is clearly quite good, but departures from
the Taylor force-free state have been noted in spheromaks (Knox et al. 1986).
The remarkable aspect of relaxation in 3D magnetofluids is the rapid time scale

over which it occurs. Spheromak researchers have observed that spheromak relax-
ation to the selective decay Taylor state can occur within a few Alfvén transit times
(Barnes et al. 1986; Jarboe 1994). Experiments have also been performed on the
merging of separate spheromak and tokamak magnetofluids of the same sign of
helicity (Brown and Bellan 1990a, b, 1992). Results show that the higher-helicity
(higher-current) merged tokamak state is established in a few Alfvén times. If selec-
tive decay of energy to helicity was the only process at work in these experiments
then we would expect that these large scale structures would evolve over the course
of many Alfvén times rather than just one or two. It should be added here that
rapid relaxation in decaying 3D magnetofluids has also been observed in simula-
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Figure 14. Experimental and theoretical (34) magnetic field profiles (poloidal component
Bz and toroidal component Bx), from the spheromak Beta II. (From Turner et al. (1983).)

tions for some time (Riyopoulos et al. 1982; Dahlburg et al. 1986, 1987; Horiuchi
and Sato 1985).

5. Discussion and conclusions
There is strong theoretical, computational and experimental evidence of rapid re-
laxation in continuous media and turbulent fluids. Experimental evidence from
guiding-centre pure-electron plasmas and 3D magnetofluids is consistent with the
selective-decay hypothesis. Theoretical and computational evidence from 2D
Navier–Stokes turbulence and from 2D MHD suggest that the underlying prin-
ciple driving the relaxation is maximal entropy as opposed to selective decay of
one ideal invariant over another. The short time scale of the relaxation and the fit
of the relaxed configuration to maximal entropy states provide the evidence.
The work of Montgomery and his collaborators indicates a different philosophical

mind set from the historical trend of fusion research. Rather than focus attention
on the fantastically complicated dynamics of turbulent fluids and magnetofluids,
why not treat the 3D MHD system statistically and bring the enormous power
of statistical mechanics and thermodynamics to the problem? It is conceivable
that turbulent 3D MHD systems relax to a most probable (maximal-entropy) state
subject to constraints on flux, current and ideal invariants in much the same way
the air in a sealed room seeks the most probable state subject to constraints on
particle number and energy.
In this light, there are several avenues for future work.

Maximal-entropy states for 3D MHD. It will be important to find maximal-entropy
states for 3D MHD analogous to the Montgomery–Joyce sinh–Poisson maximal-
entropy state demonstrated for 2D NS (perhaps using (41) as a start). The sinh-
Poisson equation (from maximal entropy) proved to be an improvement to the
Euler equation (from selective decay of enstrophy to energy) in 2D NS simulations.
Might the force-free condition (the Euler equation from selective decay of energy-
to-helicity) be improved upon by its discrete counterpart? It is well known, for
example, that spheromaks only approximately relax to the Taylor or force-free
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state. It is possible that spheromaks have instead relaxed to a maximal-entropy
state.
The problem is complicated, since we are applying statistical mechanics to con-

tinuum systems. The magnetofluid will need to be quantized using discrete current
filaments (Montgomery et al. 1979), quantized vector potential (Fyfe and Mont-
gomery 1976, 1978; Fyfe et al. 1977a,b) or discrete flux bundles. Quantization by
considering Fourier modes of the system is problematic, since a Fourier transform
ignores phase relationships among the modes. Note that the Fourier transform
of a coherent delta function and white noise are the same; organized, large-scale
structures can have the same Fourier spectrum as fully developed turbulence.
Strictly speaking, maximal-entropy concepts only apply to isolated systems (e.g.

freely decaying MHD systems). However, steady-state fusion devices will necessar-
ily be attached to reservoirs of particles and energy. Perhaps it will be useful to
focus on other thermodynamic potentials. For example, a system in contact with
a heat reservoir at constant temperature will tend to minimize the Helmholtz free
energy F = E−TS, and a system in contact with a reservoir at constant tempera-
ture and pressure will tend to minimize the Gibbs free energy G = E−TS−PV . In
addition to seeking maximal-entropy states, it might be useful to consider minimal
Helmholtz and Gibbs free-energy states.

The role of the velocity field in MHD. Experimentalists need to come to grips with the
full implications of a 3D magnetofluid, including flow. As mentioned in Sec. 4.2, the
justification for ignoring the kinetic energy and the velocity field in MHD calcula-
tions is weak. Grad–Shafranov equilibria in tokamaks and Taylor states in sphero-
maks ignore the velocity field. From a theoretical perspective, maximal-entropy
states will likely include flow. From an experimental perspective, there is strong
evidence that confined magnetofluids have large organized flows (for tokamaks,
see Tynan et al. (1992), and for spheromaks, Peyser and Goldenbaum (1988) and
Barrow and Goldenbaum (1990)). As pointed out by Frisch et al. (1975), if large-
scale magnetic structures develop then large-scale velocity fields will necessarily be
generated by the J × B term in the equation of motion (19). The inverse cascade
then proceeds through the interaction of the velocity fields with the large-scale
magnetic fields. To make matters worse, there is an inconsistency between the se-
lective decay Taylor state and the stipulation of no flow (D. Montgomery, private
communication). If there is no flow and if the magnetofluid is in steady state then
Ohm’s and Faraday’s laws reduce to

E = ηJ, ∇ × E = 0. (42)

The Euler equation for selective decay of energy to helicity (Taylor state) is

∇ × B = λB, or J =
λ

µ0
B. (43)

Equations (42) and (43) are inconsistent, since

∇ × E = ∇ × (ηJ) = ηλ

µ0
∇ × B ≠ 0, (44)

unless η is identically zero.

Role of dissipation. Formation of large-scale structures often happens on time scales
much shorter than dissipation time scales. Indeed, maximal-entropy theories have
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no dissipation at all. It is clear that reconnection in 3D MHD and vortex merger
in 2D NS require some dissipation. How is it that discrete, dissipationless models
of relaxation are such good predictors of continuum, resistive reality?

Experimental tests. Wherever possible, experimental results should be compared
with predictions of maximal entropy and selective decay. It has been demonstrated
that 2D fluids relax to structures consistent with selective decay of enstrophy to
energy (13) and that 3D magnetofluids relax to structures consistent with selective
decay of energy to helicity, (33). However, these correspondences are far from exact.
Computational evidence (at least for the case of 2D fluids) suggests that a better
correspondence can be found with the Montgomery–Joyce equation of maximal-
entropy states (18) (Matthaeus et al. 1991a)

Proof of H theorems. Finally, all arguments based on maximum entropy hinge on
the assumption of an H theorem that says that the entropy (however we define it)
tends to increase. H theorems exist for discrete systems, but no H theorem exists
for continuous systems (see, however, Carnevale et al. 1981). It is important that H
theorems be proved for 3D MHD as well as for 2D MHD and 2D NS.

Acknowledgements

The author gratefully acknowledges 10 years of guidance, discussions and appren-
ticeship with Professor David Montgomery, and wishes him all the best on the
occasion of his 60th birthday. Discussions with Drs W. H. Matthaeus, M. Hossain,
N. R. Corngold and P. J. Collings are also gratefully acknowledged. This work was
supported by the DOE, the Research Corporation and the Petroleum Research
Fund.

References†
Abragam, A. and Proctor, W. G. 1957 Experiments on spin temperature. Phys. Rev. 106, 160.
Ambrosiano, J. and Vahala, G. 1981 Most probable magnetohydrodynamic tokamak and

reversed field pinch equilibria. Phys. Fluids 24, 2253.
Barnes, C. W., Fernandez, J. C., Henins, I., Hoida, H.W., Jarboe, T. R., Knox, S. O., Marklin,

G. J. and McKenna. K. F. 1986 Experimental determination of the conservation of
magnetic helicity from the balance between source and spheromak. Phys. Fluids 29,
3415.

Barrow, B. and Goldenbaum, G. C. 1990 Mechanical injection of magnetic helicity during
spheromak formation. Phys. Rev. Lett. 64, 1369.

Bodin, H. A. B. 1984 Proceedings of the International Conference on Plasma Physics, Lausanne,
(ed. M. Q. Tran and R. J. Verbeek), Vol. I, p. 417 EEC, Brussels.

Brown, M. R. and Bellan, P. M. 1990a Current drive by spheromak injection into a tokamak.
Phys. Rev. Lett. 64, 2144.

Brown. M. R. and Bellan, P. M. 1990b Spheromak injection into a tokamak. Phys. Fluids
B2, 1306.

Brown, M. R. and Bellan, P. M. 1992 Efficiency and scaling of current drive and refueling
by spheromak injection into a tokamak. Nuc. Fusion 32, 1125.

† Campbell, L. J. and O’Neil, K. 1991 Statistics of two-dimensional point vortices and high
energy vortex states. J. Stat. Phys. 65, 495.

Cardoso, O., Marteau, D. and Tabeling, P. 1994 Quantitative experimental study of the free
decay of quasi-two-dimensional turbulence. Phys. Rev. E49, 454.

† References relevant to the subject of this paper, but not directly cited in the text, are
indicated with a dagger.



226 M. R. Brown

Carnevale, G. F., Frisch, U. and Salmon, R. 1981 H theorems in statistical fluid dynamics.
J. Phys. A: Math. Gen. 14, 1701.

Chorin, A. J. 1994 Vorticity and Turbulence. Springer-Verlag, New York.
Dahlburg, J. P., Montgomery, D., Doolen, G. D. and Turner, L. 1986 Turbulent relaxation

to a force free field reversed state. Phys. Rev. Lett. 57, 428.
Dahlburg, J. P., Montgomery, D., Doolen, G. D. and Turner, L. 1987 Turbulent relaxation

of a confined magnetofluid to a force free state. J. Plasma Phys. 37, 299.
Dahlburg, J. P., Montgomery, D., Doolen, G. D. and Turner, L. 1988 Driven, steady-state

RFP computations. J. Plasma Phys. 40, 39.
† Driscoll, C. F. 1990 Observation of an unstable l = 1 diocotron mode on a hollow electron

column. Phys. Rev. Lett. 64, 645.
Driscoll, C. F. and Fine, K. S. 1990 Experiments on vortex dynamics in pure electron plasmas.

Phys. Fluids B2, 1359.
† Eyink, G. L. and Spohn, H. 1993 Negative temperature states and large scale, long lived

vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833.
Fine, K. S., Driscoll, C. F. and Malmberg, J. H. 1991 Measurements of symmetric vortex

merger. Phys. Rev. Lett. 67, 588.
Fine, K. S., Cass, A. C., Flynn, W. G. and Driscoll, C. F. 1995 Relaxation of 2D turbulence

to vortex crystals. Phys. Rev. Lett. 75, 3277.
Fjortoft, R. 1953 On the changes in the spectral distribution of kinetic energy for two-

dimensional non-divergent flow. Tellus 5, 225.
Frisch, U., Pouquet, A., Leorat, J. and Mazure, A. 1975 Possibility of an inverse cascade of

magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769.
Fyfe, D. and Montgomery, D. 1976 High beta turbulence in two-dimensional magnetohydro-

dynamics. J. Plasma Phys. 16, 181.
Fyfe, D. and Montgomery, D. 1978 Statistical formulation of one-dimensional electron fluid

turbulence. Phys. Fluids 21, 316.
Fyfe, D., Joyce, G. and Montgomery, D. 1977a Magnetic dynamo action in two-dimensional

turbulent magnetohydrodynamics. J. Plasma Phys. 17, 317.
Fyfe, D., Montgomery, D. and Joyce, G. 1977b Dissipative, forced turbulence in two-

dimensional magnetohydrodynamics. J. Plasma Phys. 17, 369.
Gharib, M. and Derango, P. 1989 A liquid film soap film tunnel to study two-dimensional

laminar and turbulent shear flows. Physica D37, 406.
Griffiths, R. W. and Hopfinger, E. J. 1987 Coalescing of geostrophic vortices. J. Fluid Mech.

178, 73.
Hasagawa, A. 1985 Self-organization processes in continuous media. Adv. Phys. 34, 1.
Horiuchi, R. and Sato, T. 1985 Three dimensional self organization of a magnetohydrody-

namic plasma. Phys. Rev. Lett. 55, 211.
† Hossain, M. 1991 Inverse energy cascades in three-dimensional turbulence. Phys. Fluids B3,

511.
Hossain, M. 1994 Anisotropy and inverse cascades in homogeneous turbulence. Curr. Top.

Phys. Fluids 1, 207.
Hossain, M., Matthaeus,W.H. andMontgomery, D. 1983 Long-time states of inverse cascades

in the presence of a maximum length scale. J. Plasma Phys. 30, 479.
Hossain, M., Vahala, G. and Montgomery, D. 1985 Forced magnetohydrodynamic turbulence

in a uniform external magnetic field. Phys. Fluids 28, 3074.
Huang, X. P. and Driscoll, C. F. 1994 Relaxation of 2D turbulence to a metaequilibrium

near the minimum enstrophy state. Phys. Rev. Lett. 72, 2187.
Huang, X. P., Fine, K. S. and Driscoll, C. F. 1995 Coherent vorticity holes from 2D turbulence

decaying in a background shear flow. Phys. Rev. Lett. 74, 4424.
Jarboe, T. R. 1994 Review of spheromak research. Plasma Phys. Contr. Fusion 36, 945.

† Jarboe, T. R., Henins, I., Hoida, H. W., Linford, R. K., Marshall, J., Platts, D. A. and

† References relevant to the subject of this paper, but not directly cited in the text, are
indicated with a dagger.



Rapid relaxation to large-scale structures in turbulent fluids 227

Sherwood, A. R. 1980 Motion of a compact toroid inside a cylindrical flux conserver.
Phys. Rev. Lett. 45, 1264.

† Jarboe, T. R., Henins, I., Sherwood, A. R., Barnes, C. W. and Hoida, H. W. 1983 Slow
formation and sustainment of spheromaks by a coaxial magnetized plasma source.
Phys. Rev. Lett. 51, 39.

† Jarboe, T. R., Wysocki, F. J., Fernandez, J. C., Henins, I. and Marklin, G. J. 1990 Progress
with energy confinement time in the CTX spheromak. Phys. Fluids B2, 1342.

† Joyce, G. and Montgomery, D. 1972 Simulation of the negative temperature instability for
line vortices. Physics Lett. 39A, 371.

Joyce, G. and Montgomery, D. 1973 Negative temperature states for the two-dimensional
guiding-center plasma. J. Plasma Phys. 10, 107.

Kinney, R., Tajima, T., McWilliams, J. C. and Petviashvili, N. 1994 Filamentary magneto-
hydrodynamic plasmas. Phys. Plasmas 1, 260.

Knox, S. O., Barnes, C. W., Marklin, G. J., Jarboe, T. R., Henins, I., Hoida, H.W. andWright,
B. L. 1986 Observations of spheromak equilibria which differ from the minimum-energy
state and have internal kink distortions. Phys. Rev. Lett. 56, 842.

Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417.
Kraichnan, R. H. and Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys.

43, 547.
McWilliams, J. C. 1984 The emergence of isolated vortices in turbulent flow. J. Fluid Mech.

146, 21.
† McWilliams, J. C. 1990a The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361.
† McWilliams, J. C. 1990b A demonstration of the suppression of turbulent cascades by coher-

ent vortices in two-dimensional turbulence. Phys. Fluids A2, 547.
Matthaeus, W. H. and Montgomery, D. 1980 Selective decay hypothesis at high mechanical

and magnetic reynolds nembers. Ann. NY Acad. Sci. 357, 203.
† Matthaeus, W. H. andMontgomery, D. 1981 Nonlinear evolution of the sheet pinch. J. Plasma

Phys. 25, 11.
Matthaeus, W. H. andMontgomery, D. 1984 Dynamic alignment and selective decay in MHD.

Statistical Physics and Chaos in Fusion Plasmas (ed. W. H. Horton and L. E. Reichl),
p. 285. Wiley, New York.

Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. and Montgomery, D. 1991a
Selective decay and coherent vortices in two dimensional incompressible turbulence.
Phys. Rev. Lett. 66, 2731.

Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. and Montgomery, D. 1991b
Decaying two-dimensional, Navier–Stokes turbulence at very long times. Physica D51,
531.

† Melander, M. V., Zabusky, N. J. and McWilliams, J. C. 1988 Symmetric vortex merger in two
dimensions: causes and conditions. J. Fluid Mech. 195, 303.

† Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett.
65, 2137.

† Miller, J., Weichman, P. B. and Cross, M. C. 1992 Statistical mechanics, Euler’s equation and
Jupiter’s Great Red Spot. Phys. Rev. A45, 2328.

Mitchell, T. B., Driscoll, C. F. and Fine, K. S. 1993 Experiments on stability of equilibria of
two vortices in a cylindrical trap. Phys. Rev. Lett. 71, 1371.

Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge
University Press.

† Montgomery, D. 1972 Two-dimensional vortex motion and negative temperatures. Phys. Lett.
39A, 7.

Montgomery, D. 1975 Strongly magnetized classical plasma models. Plasma Physics: Les
Houches 1972 (ed. C. DeWitt and J. Peyraud). Gordon and Breach, New York.

Montgomery, D. 1977 Implications of Navier–Stokes turbulence theory for plasma turbu-
lence. Proc. Indian Acad. Sci. 86A, 87.

† References relevant to the subject of this paper, but not directly cited in the text, are
indicated with a dagger.



228 M. R. Brown

Montgomery, D. 1989 Relaxed states in driven, dissipative magnetohydrodynamics: helical
distortions and vortex pairs. Presented at the University of Minnesota Colloquium,
‘Trends in Theoretical Physics’.

† Montgomery, D. 1991a Comment on ’Negative temperature of vortex motion’. Phys. Rev.
A44, 8437.

Montgomery, D. 1991b Turbulent relaxation and its by-products. Prepared for Proceedings
of the American Mathematical Society Special Session on ‘Mathematical Aspects of
Turbulence’, 18–20 January, 1991, San Francisco, CA (ed. M. S. Berger).

Montgomery, D. and Joyce, G. 1974 Statistical mechanics of negative temperature states.
Phys. Fluids 17, 1139.

† Montgomery, D. and Lee, Y. C. 1990 Statistical mechanical selection of the shapes of disk
galaxies. Astrophys. J. 368, 380.

† Montgomery, D. and Shan, X. 1994 Determination of current profiles in confined magnetoflu-
ids. Comments Plasma Phys. Contr. Fusion 16, 35.

Montgomery, D., Turner L. and Vahala, G. 1978 Three-dimensional MHD turbulence in
cylindrical geometry. Phys. Fluids 21, 757.

Montgomery, D., Turner, L. and Vahala, G. 1979 Most probable states in magnetohydrody-
namics. J. Plasma Phys. 21, 239.

Montgomery, D., Matthaeus, W. H., Stribling, W. T. Martinez, D. 1992 Relaxation in two
dimensions and the sinh–Poisson equation. Phys. Fluids A4, 3.

Montgomery, D., Shan, X. and Matthaeus, W. H. 1993 Navier–Stokes relaxation to sinh–
Poisson states at finite reynolds numbers. Phys. Fluids A5, 2207.

Onsager, L. 1949 Statistical hydrodynamics. Suppl. Nuovo Cim. 6, 279.
† Peurrung, A. J. and Fajans, J. 1993a A limitation to the analogy between pure electron

plasmas and two-dimensional inviscid fluids. Phys. Fluids B5, 4295.
† Peurrung, A. J. and Fajans, J. 1993b Experimental dynamics of an annulus of vorticity in a

pure electron plasma. Phys. Fluids A5, 493.
† Peurrung, A. J., Notte, J. and Fajans, J. 1993 Collapse and winding of an asymmetric annulus

of vorticity. J. Fluid Mech. 252, 713.
Peyser, T. and Goldenbaum, G. C. 1988 Plasma rotation during spheromak formation. Phys.

Rev. Lett. 61, 955.
† Pointin, Y. B. and Lundgren, T. S. 1976 Statistical mechanics of two-dimensional vortices

in a bounded container. Phys. Fluids 19, 1459.
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